Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination
نویسندگان
چکیده
For near-field imaging optics, minimum resolvable feature size is highly constrained by the near-field diffraction limit associated with the illumination light wavelength and the air distance between the imaging devices and objects. In this study, a plasmonic cavity lens composed of Ag-photoresist-Ag form incorporating high spatial frequency spectrum off-axis illumination (OAI) is proposed to realize deep subwavelength imaging far beyond the near-field diffraction limit. This approach benefits from the resonance effect of the plasmonic cavity lens and the wavevector shifting behavior via OAI, which remarkably enhances the object's subwavelength information and damps negative imaging contribution from the longitudinal electric field component in imaging region. Experimental images of well resolved 60-nm half-pitch patterns under 365-nm ultra-violet light are demonstrated at air distance of 80 nm between the mask patterns and plasmonic cavity lens, approximately four-fold longer than that in the conventional near-field lithography and superlens scheme. The ultimate air distance for the 60-nm half-pitch object could be theoretically extended to 120 nm. Moreover, two-dimensional L-shape patterns and deep subwavelength patterns are illustrated via simulations and experiments. This study promises the significant potential to make plasmonic lithography as a practical, cost-effective, simple and parallel nano-fabrication approach.
منابع مشابه
Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit
Near-field optical imaging methods have been suffering from the issue of a near field diffraction limit, i.e. imaging resolution and fidelity depend strongly on the distance away from objects, which occurs due to the great decay effect of evanescent waves. Recently, plasmonic cavity lens with off-axis light illumination was proposed as a method for going beyond the near field diffraction limit ...
متن کاملPlasmonic Lenses
The resolution of almost all conventional optical system is indispensably governed by the diffraction limit. This resolution limit can be overcome by use of focusing the evanescent waves in the near field region. The concept of “superlens” was proposed firstly by Pendry in 2000 [1]. When ε= -1and μ= -1, the negative refractive index material plate can be a perfect lens [2-4]. Because of the dis...
متن کاملLocalized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging.
A new super resolution imaging method, i.e. Localized Plasmon assisted Structured Illumination Microscopy (LPSIM), is proposed. LPSIM uses an array of localized plasmonic antennas to provide dynamically tunable near-field excitations resulting in finely structured illumination patterns, independent of any propagating surface plasmon dispersion limitations. The illumination pattern feature sizes...
متن کاملNanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.
The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electroma...
متن کاملPolarization-Dependent Quasi-Far-Field Superfocusing Strategy of Nanoring-Based Plasmonic Lenses
The two-dimensional superfocusing of nanoring-based plasmonic lenses (NRPLs) beyond the diffraction limit in the far-field region remains a great challenge at optical wavelengths. In this paper, in addition to the modulation of structural parameters, we investigated the polarization-dependent focusing performance of a NRPL employing the finite-difference time-domain (FDTD) method. By utilizing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015